Как языковые модели создают тексты и что влияет на результат Артем Усачев на TenChat ru

Как языковые модели создают тексты и что влияет на результат Артем Усачев на TenChat ru

Машинное обучение позволяет компьютерам обучаться на основе больших объемов данных и создавать модели, которые могут автоматически обрабатывать и анализировать тексты. Эти модели могут быть использованы для различных задач NLP, таких как автоматическое реагирование на электронные письма, автоматический перевод текстов или создание чат-ботов. Векторизация текста является фундаментальным шагом в обработке естественного языка, позволяя перевести текст из слов в числовые представления, с которыми могут работать алгоритмы машинного обучения. От выбора метода векторизации зависит, насколько эффективно модель сможет работать с текстовыми данными и какие задачи она сможет решать.

Каталог готовых речевых данных и лицензирование:

  • Подсказки ввода служат отправной точкой для LLM для создания выходных данных.
  • Используя процессы самоконтроля, они могут выйти за пределы некоторых ограничений RNN.
  • Вызовы и перспективы развития искусственного интеллекта (AI) в обработке естественного языка (NLP) представляют собой важную область исследований и разработок.

Все эти функции называются «Scaling Laws» — законы по которым меняется качество (ошибка) модели в зависимости от масштабирования разных факторов обучения. Зная конкретный вид зависимости ошибки от каждого из трех параметров, можно без обучения предсказать ошибку, которая будет достигнута после обучения модели с конкретным значением параметра. Разрабатывайте модели, способные понимать разговорный язык для различных приложений. Сюда входят голосовые помощники, программное обеспечение для диктовки и инструменты перевода в реальном времени. Процесс включает в себя использование всеобъемлющего набора данных, состоящего из аудиозаписей разговорной речи в сочетании с соответствующими расшифровками. Шаип может собирать обучающие данные с помощью веб-сканирования из различных секторов, таких как банковское дело, страхование, розничная торговля и телекоммуникации. Языковые модели, настроенные на выполнение инструкций, рассматриваются как универсальные решатели задач. Следовательно, Перплексия может не быть лучшей мерой качества, так как она оценивает качество таких моделей косвенно. На практике «канонические» RNN редко используются для задач языкового моделирования. Вместо этого применяются улучшенные архитектуры RNN, такие как многоуровневые и двунаправленные сети, долгосрочная краткосрочная память (LSTM) и их вариации. Нейронные сети представляют собой слои взаимосвязанных элементов, обрабатывающих входные сигналы для предсказания результата. Глубокие нейросети состоят из множества уровней, что позволяет им выявлять высокоуровневые закономерности в данных. Искусственный интеллект (ИИ) — это широкая область, включающая системы, https://bcs.org/membership-and-registration/member-communities/ai-specialist-group/   которые имитируют человеческий интеллект для выполнения задач, требующих логики и понимания. Эти модели работают на устройстве пользователя или на локальных серверах. Кроме того, они очень полезны для систем машинного перевода, обеспечивая точный и эффективный перевод между разными языками, тем самым преодолевая коммуникативные барьеры. Проще говоря, это означает, что они учатся на примерах, которые показывают им правильные ответы. Подсказки ввода служат отправной точкой для LLM для создания выходных данных. Эффективное создание этих подсказок, практика, известная как разработка подсказок, может сильно повлиять на качество ответов модели. Это смесь искусства и науки, требующая четкого понимания того, как модель интерпретирует подсказки и генерирует ответы. Библиотека совместима с API OpenAI и работает на различном оборудовании, например NVIDIA и AMD GPU, Intel CPU и GPU. Они уже прошли предварительное обучение на больших данных и понимают язык в целом. Остается только дообучить их на специфических датасетах, например с помощью аугментации данных — это поможет решать специализированные задачи. У каждого слова есть численное представление, и нейросеть смотрит, какие комбинации слов и в каком порядке чаще всего встречаются в языке вместе. Однако она усложняется тем, что нет общепринятых стандартов, по которым можно было бы измерять качество, и тем, что для каждого языка нужно собирать новые данные. Например, для обучения YaLM использовали русскоязычную «Википедию», тексты из книг, поэзии и прозы, а также публикации в соцсети Twitter, которые предварительно очистили от бессмысленных фраз. Разрабатывать языковые модели стало проще, когда в в 2017 году исследователи из  Google Brain представили такую архитектуру, как трансформер. C 2019 года она используется в большинстве методов для обработки естественного языка — потому что позволяет использовать меньшие вычислительные мощности для решения сложных задач. ELMo (Embeddings from Language Models) — это модель для создания высококачественных векторных представлений слов, разработанная Allen Institute for AI. TensorFlow - это фреймворк для глубокого обучения, а Keras - это высокоуровневый API для создания и обучения нейронных сетей. Мы также импортируем Tokenizer и pad_sequences для обработки текстовых данных.  https://auslander.expert/ai-content-riski-resheniya/ Мы рассмотрели эволюцию языковых моделей в контексте генерации текста, которая охватывает как минимум последние три десятилетия. Этот процесс включает в себя серию операций, предназначенных для преобразования исходного текста в формат, который может быть эффективно обработан нейронными сетями. Цель предобработки — упростить текст, убрав из него все нерелевантные элементы, такие как специальные символы, числа, случайные пробелы и т.д., и привести его к стандартизированному виду. Нейронные сети — это алгоритмы машинного обучения, вдохновленные структурой и функционированием человеческого мозга. Они состоят из узлов (нейронов), соединенных слоями, которые могут обучаться на определенных данных для выполнения разнообразных задач, включая обработку естественного языка (NLP). В первом подходе модель должна предсказать следующее слово по предыдущим — то есть текст моделируется последовательно, слово за словом. К таким моделям, например, относятся все модели семейства GPT, а также модель PaLM.

Что языковые модели рассказывают нам о языке

Например, слова «дождь», «солнце», «ветер», скорее всего, будут находиться рядом в векторном пространстве, потому что все они описывают погоду. Нейронные сети прямого распространения расположены после слоев внимания. Они добавляют к данным нелинейные преобразования — превращают вычисленные данные для каждого слова в N-мерный вектор.

Обучение языковой модели: анализ данных и прогнозирование следующих слов

В настоящее время наиболее используемым оптимизатором для языковых моделей является AdamW [15], суть метода заключается в отдельной регуляризации затухания весов. Однако, развитие алгоритмов для обработки ЕЯ также ставит перед нами ряд вызовов и проблем. Например, системы ИИ могут столкнуться с проблемой понимания контекста, семантической неоднозначности и проблемой обработки сленга и нестандартных выражений. Вместо простой авторегрессивной генерации модель seq2seq кодирует входную последовательность в промежуточное представление — контекстный вектор — и затем использует авторегрессию для его декодирования. Это слои, которые определяют положение слова в смысловом векторе на основе его позиции в предложении. Они полезны в ситуациях, когда слово меняет смысл в зависимости от https://aiweekly.co   его расположения.